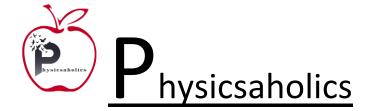


DPP – Thermal Expansion			
Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/87		
Video Solution on YouTube:-	https://youtu.be/PATQzyAO1nw		
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/27		

Q 1. Two elastic rods are joined between fixed supports as shown in the figure. Condition for no change in the lengths of individual rods with the increase of temperature is $-(a_1,a_2 = linear expansion coefficient, A_1, A_2 = Area of rods, Y_1, Y_2 = young modulus)$

- Q 2. An iron tyre is to be fitted onto a wooden wheel 1.0 metre in diameter. The diameter of the tyre is 6 mm, smaller than that of the wheel. The tyre should be heated so that its temperature increases by a minimum of (given coefficient of volume expansion of iron is 3.6 x 10⁻⁵/°C)


 (a) 167°C
 (b) 334°C
 (c) 500°C
 (d) 1000°C
- Q 3. When a block of iron floats in mercury at 0°C, a fraction K_1 of its volume is submerged, while at the temperature 60°C, a fraction K_2 is seen to be submerged. If the coefficient of volume expansion of iron is γ_{Fe} , and that of mercury γ_{Hg} , then the ratio K_1 / K_2 can be expressed as –

(a)
$$\frac{1+60\gamma_{Fe}}{1+60\gamma_{Hg}}$$
 (b) $\frac{1-60\gamma_{Fe}}{1+60\gamma_{Hg}}$ (c) $\frac{1+60\gamma_{Fe}}{1-60\gamma_{Hg}}$ (d) $\frac{1+60\gamma_{Hg}}{1+60\gamma_{Fe}}$

Q 4. Two rods one of aluminium and the other made of steel, having initial length l_1 and l_2 are connected together to form a single rod of length $l_1 + l_2$. The coefficients of linear expansion for aluminium and steel are a_a and a_s respectively. If the length of each rod increases by the same amount when their temperature are raised by t°C, then find the ratio $l_1/(l_1 + l_2) - (a_1 + a_2) - (a_2 + a_3) = (a_1 + a_3) + (a_2 + a_3) = (a_3 + a_3) + (a_3 + a_3) + (a_3 + a_3) = (a_3 + a_3) + (a_3 + a_3)$

(a) a_s / a_a	(b) a_a/a_s
(c) $a_s / (a_a + a_s)$	(d) $a_a / (a_a + a_s)$

Q 5. An iron ball is heated. The percentage increase will be the largest in –

(a) diameter(c) volume

(b) surface area(d) density

- Q 6. Two holes of unequal diameters d_1 and d_2 ($d_1 > d_2$) are cut in a metal sheet. If the sheet is heated–
 - (a) Both d_1 and d_2 will decrease
 - (b) Both d_1 and d_2 will increase
 - (c) d_1 will increase, d_2 will decrease
 - (d) d_1 will decrease, d_2 will increase
- Q 7. Two rods of lengths l₁ and l₂ are made of materials whose coefficient of linear expansions are a₁ and a₂. If the difference between two lengths is independent of temperature–

(a)
$$\frac{\ell_1}{\ell_2} = \frac{\alpha_1}{\alpha_2}$$
 (b) $\frac{\ell_1}{\ell_2} = \frac{\alpha_2}{\alpha_1}$
(c) $\ell_2^2 \alpha_1 = \ell_1^2 \alpha_2$ (d) $\frac{\alpha_1^2}{\ell_1} = \frac{\alpha_2^2}{\ell_2}$

- Q 8. Three rods of equal length are joined to form an equilateral triangle ABC. D is midpoint of AB. The coefficient of linear expansion is a_1 for AB, and a_2 for AC and BC. If the distance DC remains constant for small changes in temperature-(a) $a_1 = a_2$ (b) $a_1 = 2a_2$ (c) $a_1 = 4a_2$ (d) $a_1 = \frac{1}{2}a_2$
- Q 9. A uniform metal rod is used as a bar pendulum. If the room temperature rises by 10°C, and the coefficient of linear expansion of the metal of the rod is 2×10^{-6} per °C, the period of the pendulum will have percentage increase of-(a) -2×10^{-3} (b) -1×10^{-3} (c) 2×10^{-3} (d) 1×10^{-3}
- Q 10. A vessel is partly filled with a liquid. Coefficient of cubical expansion of material of the vessel and liquid are g_V and g_L respectively. If the system is heated, then volume unoccupied by the liquid will necessarily-
 - (a) Remain unchanged if $g_V = g_L$
 - (b) Increase if $g_V = g_L$
 - (c) Decrease if $g_V = g_L$
 - (d) None of these
- Q 11. The volume of the bulb of a mercury thermometer at 0°C is V₀ and cross-section of the capillary is A₀. The coefficient of linear expansion of glass is a_g per°C and the cubical expansion of mercury g_m per °C. If the mercury just fills the bulb at 0°C, what is the length of mercury column in capillary at T°C-

	$V_0 T(\gamma_m - 3\alpha_q)$
(a) $\frac{V_0 T(\gamma_m + 3\alpha_g)}{A_0(1 + 2\alpha_g T)}$	(b) $\frac{V_0 T(\gamma_m - 3\alpha_g)}{A_0(1 + 2\alpha_g T)}$
(c) $\frac{V_0 T(\gamma_m + 2\alpha_g)}{A_0(1 + 3\alpha_g T)}$	(d) $\frac{V_0 T(\gamma_m - 2\alpha_g)}{A_0(1 + 3\alpha_g T)}$
(c) $\frac{1}{A_0(1+3\alpha_g T)}$	(u) $\frac{1}{A_0(1+3\alpha_g T)}$

- Q 12. A beaker is completely filled with water at 4°C.If expansion in beacker is negligible, It must overflow
 - (a) when heated but not when cooled

(b) when cooled but not when heated (c) both when heated or cooled

(d) neither when heated nor when cooled

Q 13. Match The Column **Column I**

Column II

- (P) Decrease
- (A) When temperature increases then time period of pendulum [rod is of metal] (B) When temperature decreases
- then time period of pendulum [rod is of metal]
- (C) A cavity is inside of metal sphere then on increasing the temperature
- (D) Radius of A hole in a circular plate on increasing temperature

- (Q) Increase
- (R) Same

(S) Can't say anything

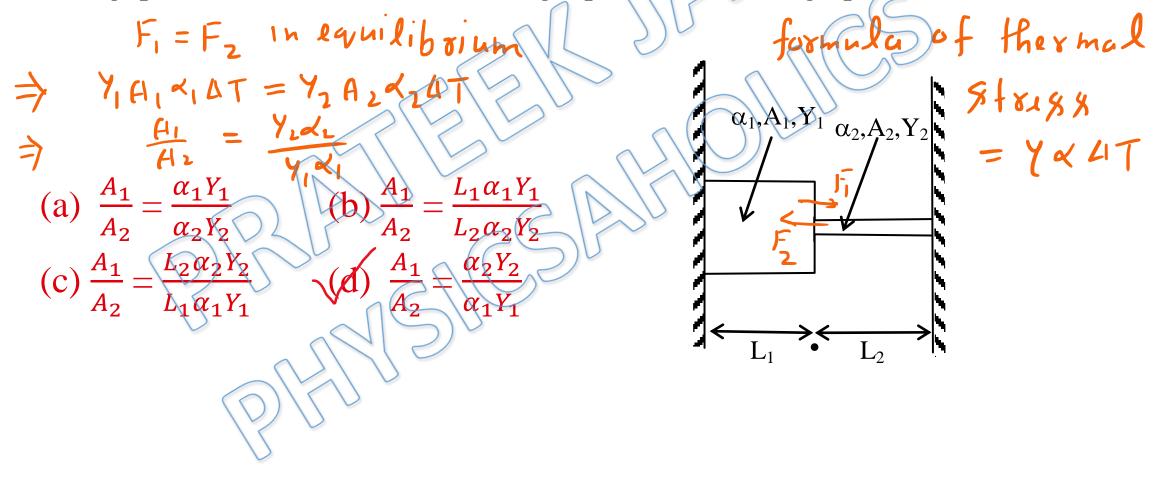
Answer Key

Q.1 d	Q.2 c	Q.3 a	Q.4 c	Q.5 c
Q.6 b	Q.7 b	Q.8 c	Q.9 d	Q.10 b
Q.11 b	Q.12 c			·

Ans. 13) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow Q$

× × ×	Interactiv Structured Live Tests Personal (
24 months No cost EMI		2.514	33/mo 56,000	>	
18 months No cost EMI			25/mo ₹47,250	>	
12 months No cost EMI			08/mo ₹38,500	>	
6 months No cost EMI		63	67/mo £28,000	>	
To be paid as a one-time payment View all plans					
Add a re	ferral code)		APPLY	

PHYSICSLVE


Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS	ICONIC *		
S	India's Best Educators			
8	Interactiv	ve Live Classes		
3	Structure	d Courses & PDFs		
S e	Live Tests	s & Quizzes		
- 492×	Personal	Coach		
×	Study Plo	inner		
A740.23				
24 months		₹2,100/mo	>	
No cost EMI		+10% OFF ₹50,400		
18 months		₹2,363/mo	>	
No cost EMI		+10% OFF ₹42,525		
12 months		₹2.888/maa		
No cost EMI		₹2,888/mo +10% OFF ₹34,650	>	
NO COST EMI		+10% OFF (34,630		
6 months		₹4,200/mo		
No cost EMI		+10% OFF ₹25,200	>	
To be paid as a one-time payment				
	Viev	v all plans		
Awesom	e! PHYSIC	SLIVE code applied	×	

JEE Main & Advanced, NSEP, INPhO, IPhO Physics DPP - Solution

DPP-1 Thermal Expansion By Physicsaholics Team

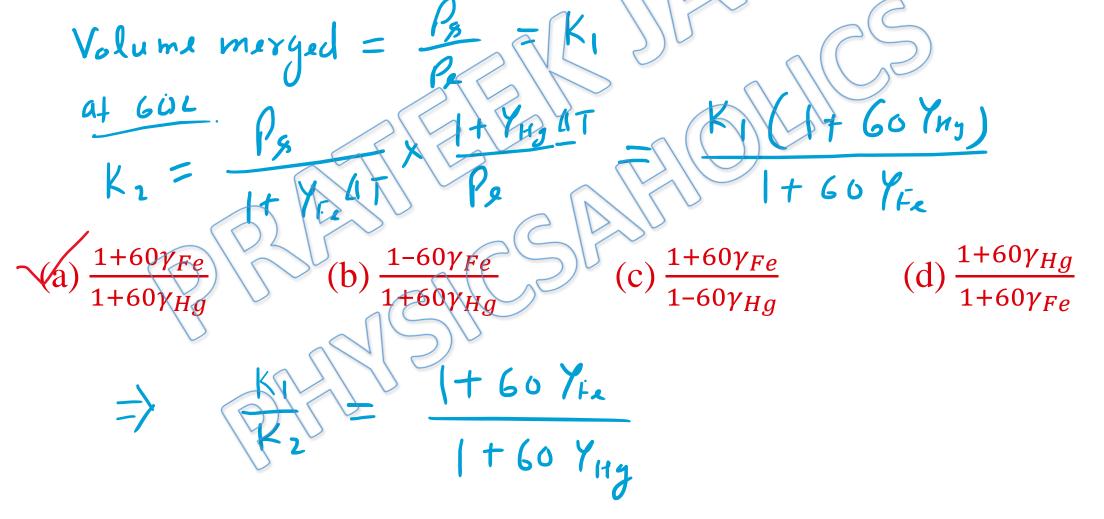
Q1) Two elastic rods are joined between fixed supports as shown in the figure. Condition for no change in the lengths of individual rods with the increase of temperature is $-(a_1,a_2 = \text{linear expansion coefficient}, A_1, A_2 = \text{Area of rods}, Y_1, Y_2 = \text{young modulus})$

Q2) An iron tyre is to be fitted onto a wooden wheel 1.0 metre in diameter. The diameter of the tyre is 6 mm, smaller than that of the wheel. The tyre should be heated so that its temperature increases by a minimum of (given coefficient of volume expansion of iron is 3.6×10^{-5} /°C) $x = \frac{1}{2} \times 10^{-5}$

× 1.2 × 10-5-

(d) 1000° C

= 500'C

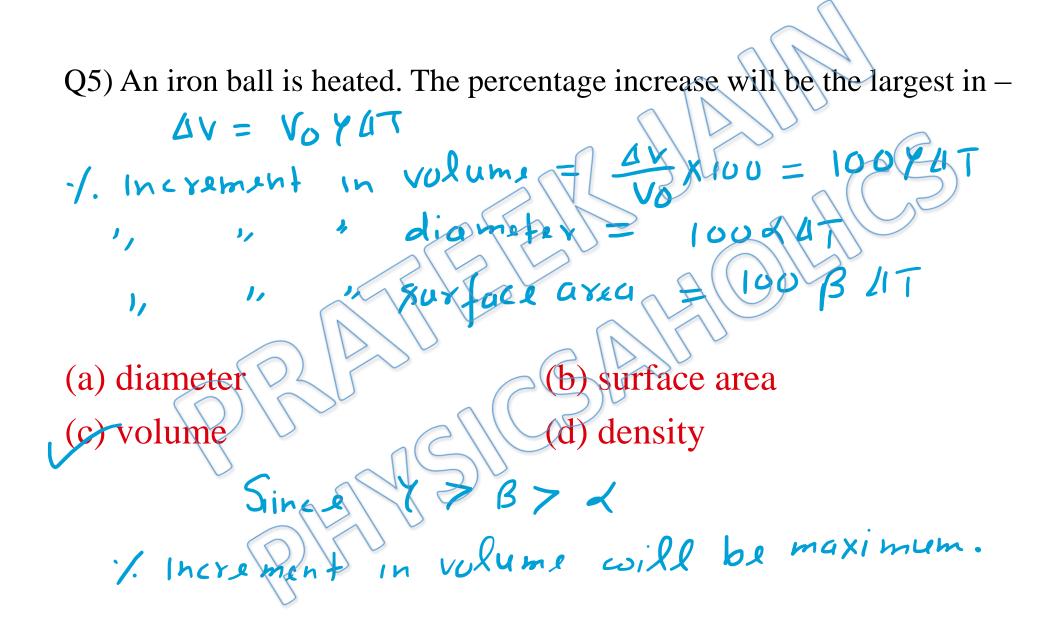

500°C

 $\Delta l = lo < 4T$ 6mm = (1m - 1)

(a) 167°

(b) 334°C

Q3) When a block of iron floats in mercury at 0°C, a fraction K_1 of its volume is submerged, while at the temperature 60°C, a fraction K_2 is seen to be submerged. If the coefficient of volume expansion of iron is γ_{Fe} , and that of mercury γ_{Hg} , then the ratio K_1 / K_2 can be expressed as –

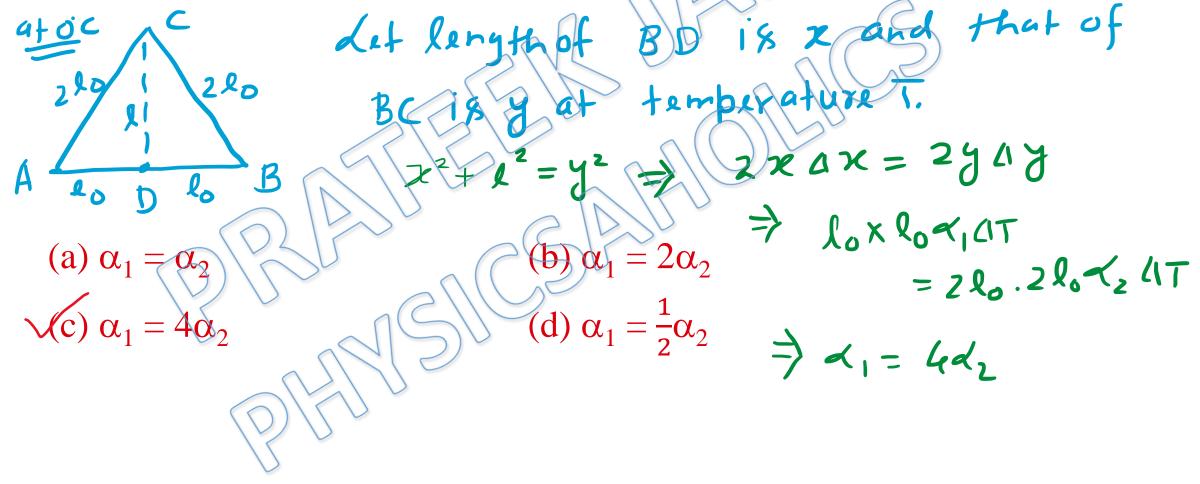

Q4) Two rods one of aluminium and the other made of steel, having initial length l_1 and l_2 are connected together to form a single rod of length $l_1 + l_2$. The coefficients of linear expansion for aluminimum and steel are a_a and a_s respectively. If the length of each rod increases by the same amount when their temperature are raised by t°C, then find the ratio $l_1/(l_1 + l_2) - d_1$

(b) a_a/a_s

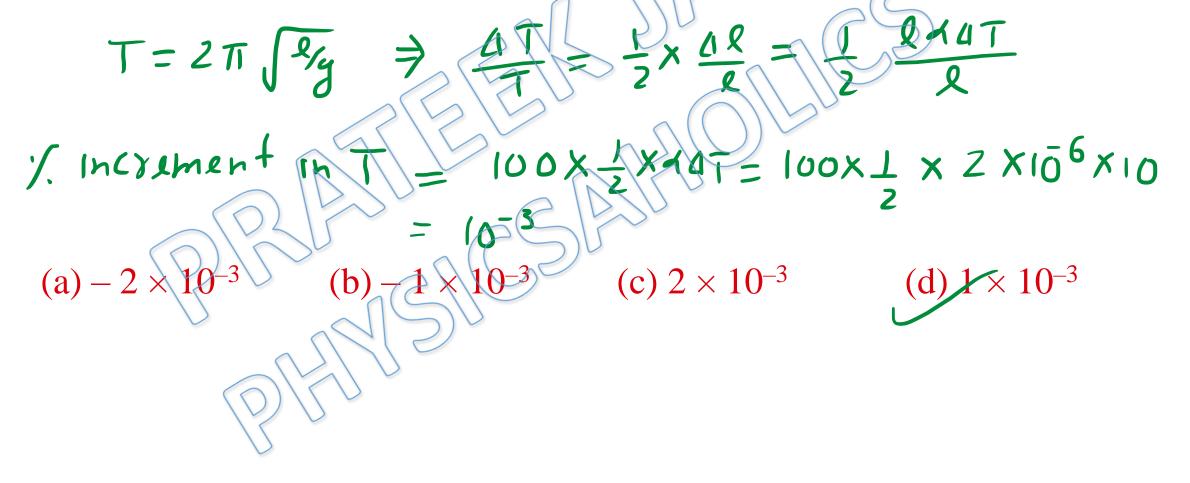
(d) $a_a / (a_a + a_s)$

 $a_a + a_8$

d. UT


Q6) Two holes of unequal diameters d_1 and d_2 ($d_1 > d_2$) are cut in a metal sheet. If the sheet is heated–

I disca increase fill the hole with removed meta. the temperature and semove discos le = diameter of disc diamete 0 (a) Both d_1 and d_2 will decrease diameters of both (b) Both d₁ and d₂ will increase holes increase. (c) d_1 will increase, d_2 will decrease (d) d_1 will decrease, d_2 will increase


Q7) Two rods of lengths ℓ_1 and ℓ_2 are made of materials whose coefficient of linear expansions are α_1 and α_2 . If the difference between two lengths is independent of temperature–

difference between lengths onstan increment in length Same S a α_2 (a) α_1 (c) $\ell_2^2 \alpha_1$ $\stackrel{\searrow}{=} \ell_1^2 \alpha_2$

Q8) Three rods of equal length are joined to form an equilateral triangle ABC. D is midpoint of AB. The coefficient of linear expansion is α_1 for AB, and α_2 for AC and BC. If the distance DC remains constant for small changes in temperature-

Q9) A uniform metal rod is used as a bar pendulum. If the room temperature rises by 10°C, and the coefficient of linear expansion of the metal of the rod is 2×10^{-6} per °C, the period of the pendulum will have percentage increase of-

Q10) A vessel is partly filled with a liquid. Coefficient of cubical expansion of material of the vessel and liquid are γ_V and γ_L respectively. If the system is heated, then volume unoccupied by the liquid will necessarily $\gamma_V = \gamma_V = \gamma_V$

---- Cabacitz = Vo Volume of liqui lig uid (a) Remain unchanged if $\gamma_V =$ (b) Increase if $\gamma_{\rm V}$ Scapacity = Vo YUT Svolume of liquid = V, YUT (c) Decrease if $\gamma_V = \gamma_I$ (d) None of these Space will increase on increasing temperature.

Q11) The volume of the bulb of a mercury thermometer at 0°C is V_0 and crosssection of the capillary is A_0 . The coefficient of linear expansion of glass is α_g per°C and the cubical expansion of mercury γ_m per °C. If the mercury just fills the bulb at 0°C, what is the length of mercury column in capillary at T°C-Volume of mercury + Gbilla (a) $\frac{V_0 T(\gamma_m + 3\alpha_g)}{1}$ $(\gamma_m - 3\alpha_i)$ $V_0 T(\gamma_m - 2\alpha_g)$ $V_0 T(\gamma_m + 2\alpha)$ (c) $A_0(1+3\alpha_g T)$ $= V_0 \left(Y_m - 3 q_j \right) T^{-1}$ excess volume Hg $= A_0(1+2\lambda_g T')$ Capillary OF Area In capillary = Vo(Ym-3dg leight o

Q12) A beaker is completely filled with water at 4°C. If expansion in beacker is negligible, It must overflow -

Water, water hay

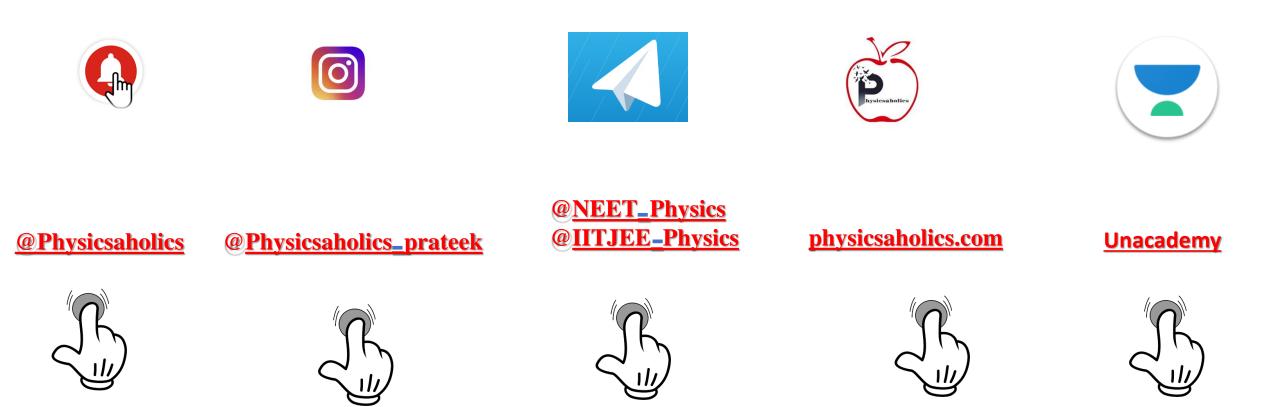
(a) when heated but not when cooled (b) when cooled but not when heated (c) both when heated or cooled (d) neither when heated nor when cooled Volume will increase.

Г=2т Q13) Match The Column $P_{0}(1+\alpha 4T)$ Column II **Column I** (P) Decrease (A) When temperature increases then time period of pendulum therement [rod is of metal] 813e of Cavity (B) When temperature decreases (Q) Increase then time period of pendulum is similar to [rod is of metal] that of material. C) A cavity is inside of metal (R) Same sphere then on increasing the temperature (D) Radius of A hole in a circular plate (S) Can't say anything on increasing temperature

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/87


Video Solution on YouTube:-

https://youtu.be/PATQzyAO1nw

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/27

